Real time facial expression recognition system based on deep learning

Jose Carlos Bustamante, Ciro Rodriguez, Doris Esenarro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

The automatic detection of facial expressions is an active research topic, since its wide fields of applications in human-computer interaction, games, security or education. However, the latest studies have been made in controlled laboratory environments, which is not according to real world scenarios. For that reason, a real time Facial Expression Recognition System (FERS) is proposed in this paper, in which a deep learning approach is applied to enhance the detection of six basic emotions: happiness, sadness, anger, disgust, fear and surprise in a real-time video streaming. This system is composed of three main components: face detection, face preparation and face expression classification. The results of proposed FERS achieve a 65% of accuracy, trained over 35558 face images..

Idioma originalInglés
Páginas (desde-hasta)4047-4051
Número de páginas5
PublicaciónInternational Journal of Recent Technology and Engineering
Volumen8
N.º2 Special Issue 11
DOI
EstadoPublicada - set. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Real time facial expression recognition system based on deep learning'. En conjunto forman una huella única.

Citar esto