Procesamiento del Lenguaje Natural (PLN) para identificar la resiliencia del retorno a clases presenciales en una universidad

Edward Flores, Justo Pastor Solis-Fonseca, Jose Hilarion Rosales-Fernandez, Cesar Raul Cuba-Aguilar, Yeremi Gracia Barahona-Altao

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The use of technology supported by information is an activity that is increasingly necessary to develop various activities in all fields. The entry into classes of new students at the university after having spent the last years of high school receiving virtual classes causes concern and possible behavioral changes, such is the case of the resilience that can exist when changing from a virtual school environment to a face-to-face university. The objective of this research was to develop a data model that allows sentiment analysis to be carried out with neural networks through Natural Language Processing (NLP), to identify the resilience of the return to face-to-face classes of virtual students at a university, the methodology used was the use of neural networks using natural language processing, through the RISC-10 resilience questionnaire in two modalities, through a Likert scale and through an open question. The results showed that there are differences between what was marked through the questionnaire and what was expressed through the same questions. It is concluded that there is a high difference between what was surveyed and what was described by the students, finding a high resilience when entering classes at the university in person, after developing virtual classes in recent years.

Título traducido de la contribuciónNatural Language Processing (NLP) to identify the resilience of the return to face-to-face classes at a university
Idioma originalEspañol
Título de la publicación alojadaProceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaSustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0., LACCEI 2024
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520781
DOI
EstadoPublicada - 2024
Evento22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024 - Hybrid, San Jose, Costa Rica
Duración: 17 jul. 202419 jul. 2024

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
ISSN (versión digital)2414-6390

Conferencia

Conferencia22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024
País/TerritorioCosta Rica
CiudadHybrid, San Jose
Período17/07/2419/07/24

Palabras clave

  • Exploratory Factor Analysis
  • Natural Language Processing
  • Resilience
  • RISC-10

Huella

Profundice en los temas de investigación de 'Procesamiento del Lenguaje Natural (PLN) para identificar la resiliencia del retorno a clases presenciales en una universidad'. En conjunto forman una huella única.

Citar esto