Implementation of Machine Learning Techniques for predicting Credit Card Customer action

Jeidy Panduro-Ramirez, Shaik Vaseem Akram, Ch Srinivasa Reddy, Jenny Maria Ruiz-Salazar, Budesh Kanwer, Ram Singh

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

When a consumer switches from one service provider to another, they are considered a churner. With an expanding number of fierce competitors inside the industry, important banks place a premium on client relationship management. A detailed and real-time credit card holder churn review is critical and helpful for bankers looking to retain credit cards. According to extensive research, maintaining an existing client is more than five times simpler than acquiring a new one. As a result, this research provides a strategy for predicting churns using a bank dataset. The "Synthetic Minority Oversampling Technique"(SMOTE) was employed in this study to handle the unbalanced dataset. Randome forest, K closest neighbour, and two boosting algorithms, XgBoost and CatBoost, are used to forecast credit card user turnover. To improve accuracy, hyperparameter tweaking using grid search was performed. The testing results demonstrate that Catboost has an accuracy of 97.85 percent and outperforms the other models.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665474139
DOI
EstadoPublicada - 2022
Evento2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2022 - Chennai, India
Duración: 15 jul. 202216 jul. 2022

Serie de la publicación

NombreProceedings of the 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2022

Conferencia

Conferencia2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2022
País/TerritorioIndia
CiudadChennai
Período15/07/2216/07/22

Huella

Profundice en los temas de investigación de 'Implementation of Machine Learning Techniques for predicting Credit Card Customer action'. En conjunto forman una huella única.

Citar esto