Comparison of Collinearity Indices for Linear Models in Agricultural Trials

Danny Villegas Rivas, José M.Palacios Sánchez, Cristina A.Alzamora Rivero, Carlos M.Franco Del Carpio, César Osorio Carrera, Martin Grados Vasquez, Luis Ramírez Calderón, Luis E.Cruz Salinas, Karin Ponce Rojas, Liliana Correa Rojas, José Jorge Rodríguez Figueroa, Cáceres Narrea, L. Felicia, Saravia Pachas, A. Delia, Arrieta Benoutt, Felipe, Arturo N.Neyra Flores, Pedro E.Zata Pupuche, Carlos Fabián FalcónYolanda Maribel Mercedes Chipana Fernández, Marilú T.Flores Lezama, Asunción R.Lezcano Tello, Pablo V.Aguilar Chávez, Víctor Hugo Fernández Rosas, Francisco Alejandro Espinoza Polo, Gaby Esther Chunga Pingo, Mercy Carolina Merejildo Vera, Carlos Alfredo Cerna Muñoz, Luis Orlando Miranda Diaz, Miguel Ángel Hernández López, Martín Desiderio Vejarano Campos, Erick Delgado Bazán, Zadith Garrido Campaña, José Paredes Carranza, Leyli J.Aguilar Ventura, Graciela M.Monroy Correa, Ruth A.Chicana Becerra, Jhonny Richard Rodriguez Barboza, Rafael Damián Villón Prieto, Claudia Rosalía Villón Prieto, Mariella M.Quipas Bellizza, Fernando Emilio Escudero Vilchez, Silvia Liliana Salazar Llerena

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and Fj collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.

Idioma originalInglés
Páginas (desde-hasta)195-207
Número de páginas13
PublicaciónOnLine Journal of Biological Sciences
Volumen24
N.º2
DOI
EstadoPublicada - 2024

Huella

Profundice en los temas de investigación de 'Comparison of Collinearity Indices for Linear Models in Agricultural Trials'. En conjunto forman una huella única.

Citar esto